1,034 research outputs found

    Control of Coulomb blockade in a mesoscopic Josephson junction using single electron tunneling

    Get PDF
    We study a circuit where a mesoscopic Josephson junction (JJ) is embedded in an environment consisting of a large bias resistor and a normal metal - superconductor tunnel junction (NIS). The effective Coulomb blockade of the JJ can be controlled by the tunneling current through the NIS junction leading to transistor-like characteristics. We show using phase correlation theory and numerical simulations that substantial current gain with low current noise (inâ‰Č1i_{n}\lesssim 1 fA/Hz\sqrt{\text{Hz}}) and noise temperature (â‰Č\lesssim 0.1 K) can be achieved. Good agreement between our numerical simulations and experimental results is obtained.Comment: 5 pages, 4 figures, RevTE

    Extending the applicability of an open-ring trap to perform experiments with a single laser-cooled ion

    Full text link
    An open-ring ion trap, also referred to as transparent trap was initially built up to perform ÎČ\beta-Îœ\nu correlation experiments with radioactive ions. This trap geometry is also well suited to perform experiments with laser-cooled ions, serving for the development of a new type of Penning trap, in the framework of the project TRAPSENSOR at the University of Granada. The goal of this project is to use a single 40^{40}Ca+^+ ion as detector for single-ion mass spectrometry. Within this project and without any modification to the initial electrode configuration, it was possible to perform Doppler cooling on 40^{40}Ca+^+ ions, starting from large clouds and reaching single ion sensitivity. This new feature of the trap might be important also for other experiments with ions produced at Radioactive Ion Beam (RIB) facilities. In this publication, the trap and the laser system will be described, together with their performance with respect to laser cooling applied to large ion clouds down to a single ion.Comment: 9 pages, 13 figure

    The Solar Heavy-Element Abundances. I. Constraints from Stellar Interiors

    Get PDF
    The latest solar atmosphere models including non-LTE corrections and three-dimensional hydrodynamic convection simulations predict a significant reduction in the solar metal abundance. This leads to a serious conflict between helioseismic data and the predictions of solar interiors models. We demonstrate that the helioseismic constraints on the surface convection zone depth and helium abundance combined with stellar interiors models can be used to constrain chemical composition. A detailed examination of the errors in the theoretical models disfavors strongly (disagreeing at the 15 σ level with the seismic data) the proposed new low abundance, while the models constructed with the older and higher solar abundances are consistent (within 2 σ). We then use the sensitivity of the seismic properties to abundance changes to invert the problem and infer a seismic solar heavy-element abundance mix with two components: meteoritic abundances and the light metals CNONe. Seismic degeneracies between the best solutions for the elements arise for changes in the relative CNONe abundances and their effects are quantified. We obtain Fe/H = 7.50 ± 0.045 ± 0.003(CNNe) and O/H = 8.86 ± 0.041 ± 0.025(CNNe) on the logarithmic scale, where H = 12 for the relative CNNe mixtures in the Grevese & Sauval mixture; the second error term reflects the uncertainty in the overall abundance scale from errors in the C, N, and Ne abundances relative to oxygen. These are consistent within the errors with the previous standard solar mixture but in strong conflict with the low oxygen abundance inferred from the three-dimensional hydro models. Changes in the Ne abundance can mimic changes in oxygen for the purposes of scalar constraints. However, models constructed with low oxygen and high neon are inconsistent with the solar sound speed profile. Implications for the solar abundance scale are discussed

    Physics Needs for Future Accelerators

    Full text link
    Contents: 1. Prologomena to any meta future physics 1.1 Physics needs for building future accelerators 1.2 Physics needs for funding future accelerators 2. Physics questions for future accelerators 2.1 Crimes and misapprehensions 2.1.1 Organized religion 2.1.2 Feudalism 2.1.3 Trotsky was right 2.2 The Standard Model as an effective field theory 2.3 What is the scale of new physics? 2.4 What could be out there? 2.5 Model-independent conclusions 3. Future accelerators 3.1 What is the physics driving the LHC? 3.2 What is the physics driving the LC? 3.2.1 Higgs physics is golden 3.2.2 LHC won't be sufficient to unravel the new physics as the TeV scale 3.2.3 LC precision measurements can pin down new physics scales 3.3 Why a Neutrino Factory? 3.4 Pushing the energy frontierComment: 19 pages, 7 figures. Talk presented at the XIX International Symposium on Lepton and Photon Interactions at High Energies (Lepton-Photon '99), Stanford University, August 9-14, 199

    The CLIC test facilities

    Get PDF

    Precise methane absorption measurements in the 1.64 mu m spectral region for the MERLIN mission

    Get PDF
    In this article we describe a high-precision laboratory measurement targeting the R(6) manifold of the 2.3 band of (CH4)-C-12. High-fidelity modeling of this absorption spectrum for atmospheric temperature and pressure conditions will be required by the Franco-German, Methane Remote Sensing LIDAR (MERLIN) space mission for retrievals of atmospheric methane. The analysis uses the Hartmann-Tran profile for modeling line shape and also includes line-mixing effects. To this end, six high-resolution and high signal-to-noise ratio absorption spectra of air-broadened methane were recorded using a frequency-stabilized cavity ring-down spectroscopy apparatus. Sample conditions corresponded to room temperature and spanned total sample pressures of 40 hPa-1013 hPa with methane molar fractions between 1 mu mol mol(-1) and 12 mu mol mol(-1). All spectroscopicmodel parameters were simultaneously adjusted in amultispectrum nonlinear least squares fit to the six measured spectra. Comparison of the fitted model to the measured spectra reveals the ability to calculate the room temperature, methane absorption coefficient to better than 0.1% at the online position of theMERLINmission. This is the first time that such fidelity has been reached in modelingmethane absorption in the investigated spectral region, fulfilling the accuracy requirements of the MERLIN mission. We also found excellent agreement when comparing the present results with measurements obtained over different pressure conditions and using other laboratory techniques. Finally, we also evaluated the impact of these new spectral parameters on atmospheric transmissions spectra calculations

    Scaling Laws for e+e−e^+ e^- Linear Colliders

    Get PDF
    Design studies of a future TeV e+e- Linear Collider (TLC) are presently being made by five major laboratories within the framework of a world-wide collaboration. A figure of merit is defined which enables an objective comparison of these different designs. This figure of merit is shown to depend only on a small number of parameters. General scaling laws for the main beam parameters and linac parameters are derived and prove to be very effective when used as guidelines to optimize the linear collider design. By adopting appropriate parameters for beam stability, the figure of merit becomes nearly independent of accelerating gradient and RF frequency of the accelerating structures. In spite of the strong dependence of the wake-fields with frequency, the single bunch emittance preservation during acceleration along the linac is also shown to be independent of the RF frequency when using equivalent trajectory correction schemes. In this situation, beam acceleration using high frequency structures becomes very advantageous because it enables high accelerating fields to be obtained, which reduces the overall length and consequently the total cost of the linac
    • 

    corecore